In hydrological modeling, baseflow refers to the flow of water in rivers and streams that is sustained by the release of water from the groundwater. Or baseflow refers to the flow of water from an aquifer or deeper soil horizon to surface water, typically due to a head gradient between fully saturated soil and stream (Craig and Tea 2022) . It may be considered the sum of the contribution of deep groundwater exchange with a river and delayed storage (Craig and Tea 2022) .
It is always calculated (only) by the water in the ground layer \(W_{grnd}\), which can also be treated as part of \(W_{grnd}\). However, the impact of other RUs (response units) on the route to the river will be ignored.
So we can give the function from:
\[F_{base} = f_{baseflow}(D_{grnd})\]
to:
\[F_{base} = f_{baseflow}(W_{grnd}, C_{grnd}, M_{base}, ...)\] \[F_{base} = k^* W_{grnd} \quad {\rm or} \quad F_{base} = k^* M_{base}\] \[0 \leq k^* \leq 1\]
where
\(W_{grnd}\) is
ground_water_mm
\(M_{base}\) is
ground_potentialBaseflow_mm
\(C_{grnd}\) is
ground_capacity_mm
, but not all the methods need the \(C_{grnd}\)\(k^*\) is estimated ratio
The output density distribution from 7 methods:
Usage
baseflow_GR4J(ground_water_mm, ground_capacity_mm)
baseflow_GR4Jfix(ground_water_mm, ground_capacity_mm, param_baseflow_grf_gamma)
baseflow_SupplyRatio(ground_water_mm, param_baseflow_sur_k)
baseflow_SupplyPow(
ground_water_mm,
param_baseflow_sup_k,
param_baseflow_sup_gamma
)
baseflow_MaxPow(
ground_water_mm,
ground_capacity_mm,
ground_potentialBaseflow_mm,
param_baseflow_map_gamma
)
baseflow_ThreshPow(
ground_water_mm,
ground_capacity_mm,
ground_potentialBaseflow_mm,
param_baseflow_thp_thresh,
param_baseflow_thp_gamma
)
baseflow_Arno(
ground_water_mm,
ground_capacity_mm,
ground_potentialBaseflow_mm,
param_baseflow_arn_thresh,
param_baseflow_arn_k
)
Arguments
- ground_water_mm
(mm/m2/TS) water volume in
groundLy
- ground_capacity_mm
(mm/m2) water storage capacity in
groundLy
- param_baseflow_grf_gamma
<2, 7> exponential parameter for
baseflow_GR4Jfix()
- param_baseflow_sur_k
<0.01, 1> coefficient parameter for
baseflow_SupplyRatio()
- param_baseflow_sup_k
<0.01, 1> coefficient parameter for
baseflow_SupplyPow()
- param_baseflow_sup_gamma
<0, 1> exponential parameter for
baseflow_SupplyPow()
- ground_potentialBaseflow_mm
<0.01, 7> (mm/m2/TS) potential baseflow
- param_baseflow_map_gamma
<0.1, 5> exponential parameter for
baseflow_MaxPow()
- param_baseflow_thp_thresh
<0.1, 0.9> coefficient parameter for
baseflow_ThreshPow()
- param_baseflow_thp_gamma
<0.1, 5> exponential parameter for
baseflow_ThreshPow()
- param_baseflow_arn_thresh
<0.1, 0.9> coefficient parameter for
baseflow_ThreshPow()
- param_baseflow_arn_k
<0.1, 1> exponential parameter for
baseflow_ThreshPow()
_GR4J (Perrin et al. 2003) :
\[F_{base} = k^* W_{grnd}\] \[k^* = 1 - \left[ 1 + \left(\frac{W_{grnd}}{C_{grnd}} \right)^4 \right]^{-1/4}\] where
\(k^*\) is estimated ratio
_GR4Jfix (Perrin et al. 2003) :
This method based on _GR4J
use a new parameter to replace the numer 4:
\[F_{base} = k^* W_{grnd}\]
\[k^* = 1 - \left[ 1 + \left(\frac{W_{grnd}}{C_{grnd}} \right)^\gamma \right]^{-1/\gamma}\]
where
\(\gamma\) is
param_baseflow_grf_gamma
_SupplyPow:
\[F_{base} = k(W_{grnd})^\gamma\] where
\(k\) is
param_baseflow_sup_k
\(\gamma\) is
param_baseflow_sup_gamma
_MaxPow:
\[F_{base} = M_{base} \left(\frac{W_{grnd}}{C_{grnd}} \right)^\gamma\] where
\(M_{base}\) is
ground_potentialBaseflow_mm
\(\gamma\) is
param_baseflow_map_gamma
_ThreshPow
This method based on the _MaxPow
and add the one threshold \(\phi_b\):
\[F_{base} = 0, \quad \frac{W_{grnd}}{C_{grnd}} < \phi_b\]
\[F_{base} = M_{base} \left(\frac{\frac{W_{grnd}}{C_{grnd}} - \phi_b}{1-\phi_b} \right)^\gamma, \quad \frac{W_{grnd}}{C_{grnd}} \geq \phi_b\]
where
\(\phi_b\) is
param_baseflow_thp_thresh
\(\gamma\) is
param_baseflow_thp_gamma
_Arno (Franchini and Pacciani 1991; Liang et al. 1994) :
This method has also in two cases divided by a threshold water content \(\phi_b\): \[F_{base} = k M_{base} \frac{W_{grnd}}{C_{grnd}}, \quad \frac{W_{grnd}}{C_{grnd}} < \phi_b\] \[F_{base} = k M_{base} \frac{W_{grnd}}{C_{grnd}} + (1-k) M_{base} \left(\frac{W_{grnd} - W_s}{C_{grnd} - W_s} \right)^2, \quad \frac{W_{grnd}}{C_{grnd}} \geq \phi_b\] \[W_s = k C_{grnd}\] where
\(\phi_b\) is
param_baseflow_arn_thresh
\(k\) is
param_baseflow_arn_k
References
Craig JR, Tea RD (2022).
“Raven User's and Developer's Manual (Version 3.5).”
Franchini M, Pacciani M (1991).
“Comparative Analysis of Several Conceptual Rainfall-Runoff Models.”
Journal of Hydrology, 122(1), 161--219.
ISSN 0022-1694, doi: 10.1016/0022-1694(91)90178-K
.
Liang X, Lettenmaier D, Wood E, Burges S (1994).
“A Simple Hydrologically Based Model of Land Surface Water and Energy Fluxes for GSMs.”
J. Geophys. Res., 99.
doi: 10.1029/94JD00483
.
Perrin C, Michel C, Andr攼㸹assian V (2003).
“Improvement of a Parsimonious Model for Streamflow Simulation.”
Journal of Hydrology, 279(1-4), 275--289.
ISSN 00221694, doi: 10.1016/S0022-1694(03)00225-7
.