In hydrological modeling, percolation refers to the process by which water from the soil moves downward through the pores and cracks in the soil or rock. This process is physically driven by a moisture gradient, but this is often simplified in conceptual percolation models (Craig and Tea 2022) . It can be calculated by the water in the soil layer \(W_{soil}\), it can also be tread as the part of the \(W_{soil}\).
So we can give the function from:
\[F_{prcl} = f_{percola}(D_{grnd}, D_{soil})\]
to:
\[F_{prcl} = f_{percola}(W_{soil}, C_{soil}, W_{grnd}, C_{grnd}, ...) = k^* W_{soil}\] \[F_{prcl} \leq W_{soil}\] \[F_{prcl} \leq C_{grnd} - W_{grnd}\]
where
\(F_{prcl}\) is
soil_percola_mm
\(W_{soil}\) is
water_soil_mm
\(C_{soil}\) is
capacity_soil_mm
\(W_{grnd}\) is
ground_water_mm
\(C_{grnd}\) is
capacity_water_mm
\(k^*\) is estimated ratio
The output density distribution from 8 methods:
Usage
percola_GR4J(soil_water_mm, soil_capacity_mm)
percola_GR4Jfix(soil_water_mm, soil_capacity_mm, param_percola_grf_k)
percola_MaxPow(
soil_water_mm,
soil_capacity_mm,
soil_potentialPercola_mm,
param_percola_map_gamma
)
percola_ThreshPow(
soil_water_mm,
soil_capacity_mm,
soil_potentialPercola_mm,
param_percola_thp_thresh,
param_percola_thp_gamma
)
percola_Arno(
soil_water_mm,
soil_capacity_mm,
soil_potentialPercola_mm,
param_percola_arn_thresh,
param_percola_arn_k
)
percola_BevenWood(
soil_water_mm,
soil_capacity_mm,
soil_fieldCapacityPerc_1,
soil_potentialPercola_mm
)
percola_SupplyPow(
soil_water_mm,
soil_capacity_mm,
param_percola_sup_k,
param_percola_sup_gamma
)
percola_SupplyRatio(soil_water_mm, param_percola_sur_k)
Arguments
- soil_water_mm
(mm/m2) water volume in
soilLy
- soil_capacity_mm
(mm/m2) average soil Capacity (maximal storage capacity)
- param_percola_grf_k
<0.01, 1> coefficient parameter for
percola_GR4Jfix()
- soil_potentialPercola_mm
<0.01, 7> (mm/m2/TS) potential percolation
- param_percola_map_gamma
<0.1, 5> exponential parameter for
percola_MaxPow()
- param_percola_thp_thresh
<0.1, 0.9> coefficient parameter for
percola_ThreshPow()
- param_percola_thp_gamma
<0.1, 5> exponential parameter for
percola_ThreshPow()
- param_percola_arn_thresh
<0.1, 0.9> coefficient parameter for
percola_ThreshPow()
- param_percola_arn_k
<0.1, 1> exponential parameter for
percola_ThreshPow()
- soil_fieldCapacityPerc_1
<0, 1> the relative ratio (\(\theta_fc / \theta^*\)) that the water content can drainage by gravity
- param_percola_sup_k
<0.01, 1> coefficient parameter for
percola_SupplyPow()
- param_percola_sup_gamma
<0, 7> parameter for
percola_SupplyPow()
- param_percola_sur_k
<0.01, 1> coefficient parameter for
percola_SupplyRatio()
_GR4J (Perrin et al. 2003) :
\[k^* = 1 - \left[ 1 + \left(\frac{4}{9} \frac{W_{soil}}{C_{soil}} \right)^4 \right]^{-1/4}\] where
\(k^*\) is estimated ratio
_GR4Jfix (Perrin et al. 2003) :
\[k^* = 1 - \left[ 1 + \left(k \frac{W_{soil}}{C_{soil}} \right)^4 \right]^{-1/4}\] where
\(k\) is
param_percola_grf_k
_MaxPow:
\[F_{prcl} = M_{prcl} \left(\frac{W_{soil}}{C_{soil}} \right)^\gamma\] where
\(M_{prcl}\) is
soil_potentialPercola_mm
\(\gamma\) is
param_baseflow_map_gamma
_ThreshPow
based on the _MaxPow
and add the one threshold \(\phi_b\):
\[F_{prcl} = 0, \quad \frac{W_{soil}}{C_{soil}} < \phi_b\]
\[F_{prcl} = M_{prcl} \left(\frac{\frac{W_{soil}}{C_{soil}} - \phi_b}{1-\phi_b} \right)^\gamma, \quad \frac{W_{soil}}{C_{soil}} \geq \phi_b\]
where
\(\phi_b\) is
param_percola_thp_thresh
\(\gamma\) is
param_percola_thp_gamma
_Arno (Franchini and Pacciani 1991; Liang et al. 1994)
has also in two cases divided by a threshold water content \(\phi_b\):
(This method is actually not the original method, but an analogy with baseflow_Arno
)
\[F_{prcl} = k M_{prcl} \frac{W_{soil}}{C_{soil}}, \quad \frac{W_{soil}}{C_{soil}} < \phi_b\]
\[F_{prcl} = k M_{prcl} \frac{W_{soil}}{C_{soil}} + (1-k) M_{prcl} \left(\frac{W_{soil} - W_s}{C_{soil} - W_s} \right)^2, \quad \frac{W_{soil}}{C_{soil}} \geq \phi_b\]
\[W_s = k C_{soil}\]
where
\(\phi_b\) is
param_percola_arn_thresh
\(k\) is
param_percola_arn_k
_BevenWood (Beven and Wood 1983; Beven et al. 1995) :
\[k = \frac{W_{soil}}{C_{soil} - W_{soil}} \quad {\rm and} \quad k \leq 1\] \[F_{prcl} = k M_{prcl}\] where
\(k_{fc}\) is
soil_fieldCapacityPerc_1
\(\gamma\) is
param_percola_sup_gamma
_SupplyPow:
\[k^* = k \left(\frac{W_{soil}}{C_{soil}} \right)^\gamma\] where
\(k\) is
param_percola_sup_k
\(\gamma\) is
param_percola_sup_gamma
References
Beven K, Lamb R, Quinn P, Romanowicz R, Freer J (1995).
“TOPMODEL.”
Computer models of watershed hydrology., 627--668.
Beven K, Wood EF (1983).
“Catchment Geomorphology and the Dynamics of Runoff Contributing Areas.”
Journal of Hydrology, 65(1), 139--158.
ISSN 0022-1694, doi: 10.1016/0022-1694(83)90214-7
.
Craig JR, Tea RD (2022).
“Raven User's and Developer's Manual (Version 3.5).”
Franchini M, Pacciani M (1991).
“Comparative Analysis of Several Conceptual Rainfall-Runoff Models.”
Journal of Hydrology, 122(1), 161--219.
ISSN 0022-1694, doi: 10.1016/0022-1694(91)90178-K
.
Liang X, Lettenmaier D, Wood E, Burges S (1994).
“A Simple Hydrologically Based Model of Land Surface Water and Energy Fluxes for GSMs.”
J. Geophys. Res., 99.
doi: 10.1029/94JD00483
.
Perrin C, Michel C, Andr攼㸹assian V (2003).
“Improvement of a Parsimonious Model for Streamflow Simulation.”
Journal of Hydrology, 279(1-4), 275--289.
ISSN 00221694, doi: 10.1016/S0022-1694(03)00225-7
.