Skip to contents

In hydrological modeling, interflow refers to the movement of water that is transported horizontally through the soil or aquifer. Like baseflow, the impact of other RUs (response units) on the route to the river will be ignored.

It can be calculated by the water in the soil layer \(W_{soil}\), which can also be tread as the part of the \(W_{soil}\).

So we can give the function from:

\[F_{itfl} = f_{inteflow}(D_{grnd}, D_{soil})\]

to:

\[F_{itfl} = f_{inteflow}(W_{soil}, C_{soil}, ...) = k^* W_{soil}\] \[F_{itfl} \leq W_{soil}\]

where

  • \(F_{itfl}\) is soil_inteflow_mm

  • \(W_{soil}\) is water_soil_mm

  • \(C_{soil}\) is capacity_soil_mm

  • \(k^*\) is estimated ratio

The output density distribution from 8 methods:

Usage

inteflow_GR4Jfix(
  soil_water_mm,
  soil_capacity_mm,
  param_inteflow_grf_k,
  param_inteflow_grf_gamma
)

inteflow_MaxPow(
  soil_water_mm,
  soil_capacity_mm,
  soil_potentialInteflow_mm,
  param_inteflow_map_gamma
)

inteflow_ThreshPow(
  soil_water_mm,
  soil_capacity_mm,
  soil_potentialInteflow_mm,
  param_inteflow_thp_thresh,
  param_inteflow_thp_gamma
)

inteflow_Arno(
  soil_water_mm,
  soil_capacity_mm,
  soil_potentialInteflow_mm,
  param_inteflow_arn_thresh,
  param_inteflow_arn_k
)

inteflow_BevenWood(
  soil_water_mm,
  soil_capacity_mm,
  soil_fieldCapacityPerc_1,
  soil_potentialInteflow_mm
)

inteflow_SupplyPow0(
  soil_water_mm,
  param_inteflow_sp0_k,
  param_inteflow_sp0_gamma
)

inteflow_SupplyPow(
  soil_water_mm,
  soil_capacity_mm,
  param_inteflow_sup_k,
  param_inteflow_sup_gamma
)

inteflow_SupplyRatio(soil_water_mm, param_inteflow_sur_k)

Arguments

soil_water_mm

(mm/m2) water volume in soilLy

soil_capacity_mm

(mm/m2) average soil Capacity (maximal storage capacity)

param_inteflow_grf_k

<0.01, 1> coefficient parameter for inteflow_GR4Jfix()

param_inteflow_grf_gamma

<2, 7> exponential parameter for baseflow_GR4Jfix()

soil_potentialInteflow_mm

<0.01, 7> (mm/m2/TS) potential interflow

param_inteflow_map_gamma

<0.1, 5> exponential parameter for inteflow_MaxPow()

param_inteflow_thp_thresh

<0.1, 0.9> coefficient parameter for inteflow_ThreshPow()

param_inteflow_thp_gamma

<0.1, 5> exponential parameter for inteflow_ThreshPow()

param_inteflow_arn_thresh

<0.1, 0.9> coefficient parameter for inteflow_ThreshPow()

param_inteflow_arn_k

<0.1, 1> exponential parameter for inteflow_ThreshPow()

soil_fieldCapacityPerc_1

<0, 1> the relative ratio (\(\theta_fc / \theta^*\)) that the water content can drainage by gravity

param_inteflow_sp0_k

<0.01, 1> coefficient parameter for inteflow_SupplyPow0()

param_inteflow_sp0_gamma

<0, 1> exponential parameter for inteflow_SupplyPow0()

param_inteflow_sup_k

<0.01, 1> coefficient parameter for inteflow_SupplyPow()

param_inteflow_sup_gamma

<0, 7> parameter for inteflow_SupplyPow()

param_inteflow_sur_k

<0.01, 1> coefficient parameter for inteflow_SupplyRatio()

Value

inteflow_mm (mm/m2)

_GR4Jfix (Perrin et al. 2003) :

\[k^* = 1 - \left[ 1 + \left(k \frac{W_{soil}}{C_{soil}} \right)^\gamma \right]^{-1/\gamma}\] where

  • \(k\) is param_inteflow_grf_k

  • \(\gamma\) is param_baseflow_grf_gamma

_MaxPow:

\[F_{itfl} = M_{itfl} \left(\frac{W_{soil}}{C_{soil}} \right)^\gamma\] where

  • \(M_{itfl}\) is soil_potentialInteflow_mm

  • \(\gamma\) is param_inteflow_map_gamma

_ThreshPow

based on the _MaxPow and add the one threshold \(\phi_b\): \[F_{itfl} = 0, \quad \frac{W_{soil}}{C_{soil}} < \phi_b\] \[F_{itfl} = M_{itfl} \left(\frac{\frac{W_{soil}}{C_{soil}} - \phi_b}{1-\phi_b} \right)^\gamma, \quad \frac{W_{soil}}{C_{soil}} \geq \phi_b\] where

  • \(\phi_b\) is param_inteflow_thp_thresh

  • \(\gamma\) is param_inteflow_thp_gamma

_Arno (Franchini and Pacciani 1991; Liang et al. 1994)

has also in two cases divided by a threshold water content \(\phi_b\): (This method is actually not the original method, but an analogy with inteflow_Arno) \[F_{itfl} = k M_{itfl} \frac{W_{soil}}{C_{soil}}, \quad \frac{W_{soil}}{C_{soil}} < \phi_b\] \[F_{itfl} = k M_{itfl} \frac{W_{soil}}{C_{soil}} + (1-k) M_{itfl} \left(\frac{W_{soil} - W_s}{C_{soil} - W_s} \right)^2, \quad \frac{W_{soil}}{C_{soil}} \geq \phi_b\] \[W_s = k C_{soil}\] where

  • \(\phi_b\) is param_inteflow_arn_thresh

  • \(k\) is param_inteflow_arn_k

_BevenWood (Beven and Wood 1983; Beven et al. 1995) :

\[k = \frac{W_{soil}}{C_{soil} - W_{soil}} \quad {\rm and} \quad k \leq 1\] \[F_{itfl} = k M_{itfl}\] where

  • \(k_{fc}\) is soil_fieldCapacityPerc_1

  • \(\gamma\) is param_inteflow_sup_gamma

_SupplyPow0:

\[F_{base} = k(W_{grnd})^\gamma\] where

  • \(k\) is param_inteflow_sup_k

  • \(\gamma\) is param_inteflow_sup_gamma

_SupplyPow:

\[k^* = k \left(\frac{W_{soil}}{C_{soil}} \right)^\gamma\] where

  • \(k\) is param_inteflow_sup_k

  • \(\gamma\) is param_inteflow_sup_gamma

_SupplyRatio:

\[k^* = k\] where

  • \(k\) is param_inteflow_sur_k

References

Beven K, Lamb R, Quinn P, Romanowicz R, Freer J (1995). “TOPMODEL.” Computer models of watershed hydrology., 627--668.

Beven K, Wood EF (1983). “Catchment Geomorphology and the Dynamics of Runoff Contributing Areas.” Journal of Hydrology, 65(1), 139--158. ISSN 0022-1694, doi: 10.1016/0022-1694(83)90214-7 .

Franchini M, Pacciani M (1991). “Comparative Analysis of Several Conceptual Rainfall-Runoff Models.” Journal of Hydrology, 122(1), 161--219. ISSN 0022-1694, doi: 10.1016/0022-1694(91)90178-K .

Liang X, Lettenmaier D, Wood E, Burges S (1994). “A Simple Hydrologically Based Model of Land Surface Water and Energy Fluxes for GSMs.” J. Geophys. Res., 99. doi: 10.1029/94JD00483 .

Perrin C, Michel C, Andr攼㸹assian V (2003). “Improvement of a Parsimonious Model for Streamflow Simulation.” Journal of Hydrology, 279(1-4), 275--289. ISSN 00221694, doi: 10.1016/S0022-1694(03)00225-7 .